11 research outputs found

    Occupational cooling practices of emergency first responders in the United States: A survey

    Get PDF
    This is an accepted manuscript of an article published by Taylor & Francis in Temperature on 29/07/2018, available online: https://doi.org/10.1080/23328940.2018.1493907 The accepted version of the publication may differ from the final published version.© 2018 Informa UK Limited, trading as Taylor & Francis Group. Despite extensive documentation directed specifically toward mitigating thermal strain of first responders, we wished to ascertain the degree to which first responders applied cooling strategies, and what opinions are held by the various agencies/departments within the United States. An internet-based survey of first responders was distributed to the International Association of Fire Chiefs, International Association of Fire Firefighters, National Bomb Squad Advisory Board and the USA Interagency Board and their subsequent departments and branches. Individual first responder departments were questioned regarding the use of pre-, concurrent, post-cooling, types of methods employed, and/or reasons why they had not incorporated various methods in first responder deployment. Completed surveys were collected from 119 unique de-identified departments, including those working in law enforcement (29%), as firefighters (29%), EOD (28%) and HAZMAT technicians (15%). One-hundred and eighteen departments (99%) reported heat strain/illness to be a risk to employee safety during occupational duties. The percentage of departments with at least one case of heat illness in the previous year were as follows: fire (39%) HAZMAT (23%), EOD (20%) and law enforcement (18%). Post-cooling was the scheduled cooling method implemented the most (63%). Fire departments were significantly more likely to use post-cooling, as well as combine two types of scheduled cooling compared to other departments. Importantly, 25% of all departments surveyed provided no cooling whatsoever. The greatest barriers to personnel cooling were as follows–availability, cost, logistics, and knowledge. Our findings could aid in a better understanding of current practices and perceptions of heat illness and injury prevention in United States first responders. Abbreviations: EOD: explosive ordnance disposal; HAZMAT: hazardous materials.This project is financially supported by the United States Government through the United States Department of Defense (DOD).Published versio

    Copeptin reflects physiological strain during thermal stress.

    Get PDF
    PURPOSE: To prevent heat-related illnesses, guidelines recommend limiting core body temperature (T c) ≤ 38 °C during thermal stress. Copeptin, a surrogate for arginine vasopressin secretion, could provide useful information about fluid balance, thermal strain and health risks. It was hypothesised that plasma copeptin would rise with dehydration from occupational heat stress, concurrent with sympathoadrenal activation and reduced glomerular filtration, and that these changes would reflect T c responses. METHODS: Volunteers (n = 15) were recruited from a British Army unit deployed to East Africa. During a simulated combat assault (3.5 h, final ambient temperature 27 °C), T c was recorded by radiotelemetry to differentiate volunteers with maximum T c > 38 °C versus ≤ 38 °C. Blood was sampled beforehand and afterwards, for measurement of copeptin, cortisol, free normetanephrine, osmolality and creatinine. RESULTS: There was a significant (P  38 °C (n = 8) vs ≤ 38 °C (n = 7) there were significantly greater elevations in copeptin (10.4 vs. 2.4 pmol L(-1)) and creatinine (10 vs. 2 μmol L(-1)), but no differences in cortisol, free normetanephrine or osmolality. CONCLUSIONS: Changes in copeptin reflected T c response more closely than sympathoadrenal markers or osmolality. Dynamic relationships with tonicity and kidney function may help to explain this finding. As a surrogate for integrated physiological strain during work in a field environment, copeptin assay could inform future measures to prevent heat-related illnesses

    Post-exercise cooling techniques in hot, humid conditions

    No full text
    Aim: To investigate the effect of task familiarisation on the spontaneous pattern of energy expenditure during a series of 2000 m cycling time trials (TTs). Method: Nine trained males completed three 2000 m TTs on a Velotron cycling ergometer. To examine pacing strategy, the data were assigned to 250 m “bins,” with the pattern of aerobic and anaerobic energy expenditure calculated from total work accomplished and gas-exchange data. Results: There were no significant differences between trials in performance times (191.4 (SD 4.3), 189.4 (4.6), 190.1 (5.6) s), total aerobic (58.3 (2.7), 58.4 (3.1), 58.0 (3.4) kJ) and total anaerobic energy expenditure (16.4 (3.3), 17.3 (2.8), 16.5 (3.1) kJ). Pacing strategy in the second and third TT differed from the first TT in that a lower power output was adopted during the first 500 m, enabling a higher power output during the final 750 m of the TT. This adjustment in the pattern of energy expenditure was mediated by an alteration in the pattern of anaerobic energy expenditure, which paralleled changes in total energy expenditure. Furthermore, participants retained an anaerobic energy “reserve” enabling an end-spurt during the second and third trials. Conclusion: Small modifications to the pacing strategy are made following a single bout of exercise, primarily by altering the rate of anaerobic energy expenditure. This may have served to prevent critical metabolic disturbances. The alteration in pacing strategy following the first exercise bout is compatible with a complex intelligent regulatory system
    corecore